Alpha AAX Amino Acid Mix
Home | Products & Services | Modular Nutrition | Medical Information | Alpha Nutrition Program | Logon |

Alpha Nutrition Online

Alpha AAX

Protein Nutrition
Proteins as Agents of Disease
Low Protein Diets
Proteins as Enzymes
Amino Acids, the Alphabet of Life
Alpha AAX Ingredients
Alpha AAX Instructions
Modular Nutrition

Free of milk, egg, soya and other food proteins

Alpha AAX is available in 500 Gram Jars
Physician supervision is recommended

Order Alpha AAX online

Before you order, we want you to be well educated about amino acids and their proper use as a nutritional supplement.
Please read our online information carefully.

Formula Disclaimer

US $ Formula Prices
depend on the daily exchange rate.

Proteins and Amino Acids

Protein forms a major part of our structure.  About 3% of the total body protein is recycled every day (approximately 200 grams). In a healthy adult, net protein loss in a day may be as low as 2 grams. This mean that protein intake of 2 grams per day can replace losses. Dietary requirements for protein increase with activity, growth, and protein losses, especially following injury or during illness. The average American diet supplies 10-14% of total calories as protein. Protein digestion and absorption are generally efficient. A minimum  protein intake for a normal adult  is approximately 25 grams.

Loss of protein-tissues occurs with malnutrition, following surgery, injury, and chronic illness. Adequate intake of energy molecules, both carbohydrate and fats, is said to "spare protein", permitting a small protein intake to maintain positive nitrogen balance. In metabolic studies, the total amount of nitrogen intake is compared with the total excretion of nitrogen to assess protein balance. Excess amino acids may be converted to fuel.

When amino acids are "burned" as a fuel, ammonia (NH3] is the waste product. Ammonia must be carried to the liver, converted to urea and excreted by the kidneys. One of the penalties of amino acid excess is ammonia excess, a potential cause of body malfunction following a high protein meal. The blood measurement of urea nitrogen (BUN) shows the balance between urea production by the liver and excretion by the kidneys. The BUN rises in kidney failure and serves as a measure of ammonia or nitrogen. In liver disease, reduced ability to synthesize urea leads to ammonia accumulation.

Ammonia is neurotoxic and contributes to the syndrome of brain dysfunction in liver failure, hepatic encephalopathy. Patients with reduced kidney or liver function are required to restrict protein, since their ability to handle the nitrogen waste of oxidized amino acids is limited. Fluctuating levels of ammonia influences brain cell function; they should be considered whenever brain function is abnormal. Some children are born with metabolic abnormalities in the handling of amino acids and ammonia. They often present with malfunctioning brains.

Amino Acid Requirements & Intolerances

The need for specific amino acids is difficult to determine. There is a wide range of needs and tolerances among different individuals. Amino acids appear to be relatively easy to obtain in adequate amounts, even on simple vegetarian diets with no meat, fish, eggs, or milk, provided that different vegetables are combined. Mixing a legume with a grain or with a tuber should provide a complete amino acid mixture, as well as a good variety of vitamins and minerals. 

Protein-deficiency anxiety is not well-founded in affluent countries. Some of the non-essential AA's may become essential if their synthesis is blocked by enzyme deficiencies. In order for protein synthesis to proceed, all the amino acids must be supplied at the same time. Since we are mammals, all mammalian proteins tend to have the same set of AAs as our own. Plant proteins may be deficient in lysine, threonine, and tryptophan. Vegetables should be combined to achieve a complete the AA set. Corn or maize, for example, is deficient in lysine, although many years of corn-breeding research have produced hybrid corns with increased lysine content. The substitution of the newer corn hybrids may eliminate protein malnutrition where this is a staple plant. 

Some patients on very limited diets (rice and a few vegetables alone, for example) seem to ingest sufficient essential amino acids to remain well, at least for several months even though their food may be deficient in essential AAs. A minimal diet presents minimal problems to one's metabolism. A protein deficient diet may be better tolerated than a protein excess diet.

We have thought a lot about the relationship between the food intake of protein and the intakes of pure amino acids in one of our elemental nutrient formulas. A naive assumption is that amino acid intake and protein intake are the same. If you decide that a patient needs 75 Grams of protein per day and you want to replace the protein with amino acids, you assume you have to give them 75 grams of amino acids. Not so.

 If you look at RDA values for protein, you get the wrong idea that amino acid intake level has to the same as protein intake but we believe that a daily intake of 25 grams of free form amino acids will be adequate for most people, most of the time. RDA protein values are crude approximations based on food protein values. The proteins in foods have to be digested into dipeptides and free amino acids before nutrients are available and protein digestion is incomplete Some percentage of food protein is wasted in the digestive tract.

The trick is that if amino acids arrive in high concentrations, the liver is obligated to destroy most of them; so that high protein intake is wasteful if you want the amino acids to be utilized as protein building blocks and as neurotransmitter substrates.

Second, you have to know that the body recycles amino acids and becomes every efficient when protein intake is low; the loss of amino acids can drop to about 2 grams per day.

Third, you have to know that amino acid proportioning is relevant to how amino acids are admitted to cells and how they are utilized. The concept of protein quality is used to express the idea that all the 9 essential amino acids have to be present before any of them can be used to make proteins. Plants may have incomplete amino acids sets, for example, and protein deficiency symptoms can appear even when the protein intake is adequate.

On the positive side of the equation, if a completely available, precisely engineered amino acid set is available, the total daily requirement is lower the RDA values for food protein intake As a rule of thumb we recommend calculating the RDA protein requirement in Grams and supplying 30 % to 50% of that value as Alpha AAX, a blend of amino acids (available separately in Alpha AAX or combined with other nutrients in Alpha ENF, Alpha PMX, and Alpha DMX.)

Inborn Errors Of Metabolism

Some amino acid abnormalities are overt and abnormal amounts of an under-utilized amino acid or excessive amounts of an abnormal metabolite accumulate in the blood and are excreted in the urine. Specific disorders of amino acid intolerance are well described in infants and children with major and often life-threatening, disorders. These disorders occur when the DNA code is defective or not read properly into correct enzyme construction. The patterns of the major inborn errors of metabolism have minor versions in individuals who are less obviously dysfunctional. The major amino acid disorders are readily diagnosed by clinical and laboratory examinations; the minor manifestations are difficult to detect. Disorders of amino acid metabolism demonstrate what happens when a specific enzyme is deficient or malfunctions. There are two basic consequences:

  • The precursor amino acid, which should be utilized, accumulates or follows another route of metabolism and produces toxicity.
  • The products which should be made from the amino acid by the defective enzyme system are deficient and normal function is impaired.

Amino acid intolerance in newborn infants shows up as failure to thrive or as grave life-threatening illnesses. The intolerance may be singular and specific, or it may be a more generalized inability to metabolize amino acids. All the branch-chain amino acids not incorporated into protein structure or functional molecules are processed through a common system, which is found in the mitochondria of all cells. We can call this Mitochondrial Amino Acid Processor, MAAP.

MAAP allows us to burn excess AA's as fuel by breaking down amino acids in a sequence which requires 3 enzymes and the co-factors, Biotin, Vitamin B12, and magnesium. If the enzymes are deficient or fail to function properly, amino acid processing is blocked. The more severe blocks result in a gravely ill infant who is sleepy or unconscious, projectile vomits, smells odd, and displays prolific growth of the yeast, candida, appearing in the mouth as "thrush" or on the skin as red scalded-looking areas, especially in the diaper area. The most afflicted infants die of dehydration and infection and not all can be saved, even by the most skilled management. Their urine shows abnormal amounts of amino acids (aminoaciduria) and ketosis, which results from the increased oxidation of fatty acids as a fuel.

MAAP may malfunction when the cofactors Biotin and VMB12 are missing. A good way to check the functional presence of VMB12 is to measure the urine excretion of Methylmalonic Acid, the second-step product of MAAPs processing, which accumulates if VMB12 deficiency limits its conversion to the step three product, Succinyl CoA. Succinyl CoA is the pivotal molecule, linking amino acid metabolism to carbohydrate metabolism. If your MAAP cannot turn amino acids into succinyl CoA, then you do not want to eat many of them.

Biotin is supplied in our food, but also by colon bacteria, as a by-product of their metabolism. Reduced dietary intake, coupled with interference with colon biotin production by antibiotics, colonics, or surgery is required before deficiency is manifest. Biotin deficiency will cause MAAP dysfunction. An interesting relationship is the interference of biotin absorption by a protein in egg white, Avidin. High intake of raw eggs can induce biotin deficiency.  Some errors of metabolic processing of biotin are known and may be corrected by administering high daily doses of biotin.

Good News! Better Online Order Discounts 2011   Order Alpha  AAX online

All Alpha Nutrition products and services are ordered at Alpha Online. We ship through the Post Office to all destinations in Canada, Continental USA, Alaska, Hawaii. Prices are quoted in Canadian dollar. US $ cost depends on the dollar exchange rate. Alpha Nutrition is a registered trademark and a division of Environmed Research Inc., Sechelt, British Columbia, Canada. In business since 1984. Online since 1995.

Secure Order Site  
Secured by GeoTrust QuickSSL

Create an Account| Start an Order| Return to Shopping Cart | Contact Us| Order Help | Logon to my Account