Breathe Clean Air Air, Breathing


Environment

Some Topics

 

YINYANG

Lungs Structure and Function

The lung is a branching system of tubes and air sacs. Air enters the nose and mouth and is directed in the throat to the trachea which carries the air in the chest. The trachea splits into two major bronchi, one for each lung. The bronchi branch into smaller and smaller tubes that end ending in air sacks (alveoli) where the gas exchanges occur. Adult lungs contain about 600 million alveoli, air-filled sacs that are surrounded by capillaries. Oxygen in the inhaled air enters the capillaries in alveoli and attaches to hemoglobin molecules. At the same time, carbon dioxide leaves the capillaries and enters the alveoli. The carbon dioxide leaves the lungs when you exhale.

The unborn infant is suspended in fluid and does not need lungs; the mother’s placenta exchanges oxygen and carbon dioxide. The fetal lungs are filled with amniotic fluid which is expelled during birth. After birth, the newborn baby inhales air for the first time. Deep breathing begins about 30 seconds after birth, and if all goes well, respiration continues at a rate of about 20 to 30 breaths per minute for the duration of life. Lungs are not yet fully mature at birth and breathing problems are the number one health problem in infants and young children.

Breathing is continuous and dynamic interaction of respiratory muscles, monitors and regulators in the brain. The brain receives information from multiple receptors such as blood chemoreceptors, receptors in the lung, and muscle receptors. A breathing center in the brainstem is a vital computer that decides how fast and deep breathing should be and sends signals to respiratory muscles.

Breathing is accomplished by expansion and contraction of the chest. Chest movement is just visible with quiet breathing at rest. Breathing accelerates with exertion and chest movement becomes more obvious as exertion increases. A runner, after an 800 meter competition, has a heaving chest and cannot speak until his maximal breathing effort subsides.

A person suffering an asthmatic attack stops other activities and concentrates all his or her energy in getting enough air exchange in the obstructed lungs. The small tubes in the lung can constrict and block air flow, especially the flow of air leaving the lungs.

Inspiration is achieved by the contraction of the diaphragm muscles and expansion of the chest. Expiration occurs when the diaphragm and the chest all relaxes reducing the volume inside the chest. Expiration can be forced by the contraction of abdominal muscles that increase intra-abdominal pressure, forcing the diaphragm up like a piston.

Blood levels of oxygen and carbon dioxide are monitored to determine the effectiveness of breathing. Low blood oxygen (hypoxemia) and high blood carbon dioxide (hypercapnia) increase the breathing effort.

Chemoreceptors in the carotid arteries, aortic arch, and brainstem (medulla) activate the inspiratory drive. High carbon dioxide is the strongest stimulus for increased respiratory effort. Low oxygen is also a stimulus to increase respiration.

Changes in intrathoracic pressure influence blood flood and heart action. Venous blood flows from the body to the right side of heart. Negative pressure in the chest promotes venous return. Positive pressure impedes venous return. The right ventricle pumps venous blood with low oxygen into the lungs to receive more oxygen.

The lungs are the only organs that receive arterial blood with low oxygen concentration. Oxygenated blood leaves the lungs via the pulmonary veins, returns to the left atrium of the heart to be pumped to the remainder of the body by the left ventricle.


  • Discussions of Environmental Science and Human Ecology were developed by Environmed Research Inc. Sechelt, B.C. Canada. Online Topics were developed from the book, Air and Breathing. This book helps you understand air quality issues, normal breathing and the causes of breathing disorders. You will find detailed information about the atmosphere, air pollution, climate change, airborne infection, air quality and airborne hazards at home. Air and Breathing is available as a Printed book or as an eBook Edition for Download

    Download eBook

    The Author Stephen J. Gislason MD.

    Not all respiratory diseases are caused by airborne pathogens. If asthma, bronchitis and/or nose sinus congestion is chronic or attacks occur frequently in all seasons and are not related to airborne exposure, then consider delayed pattern food allergy as the cause and do diet revision using the Alpha Nutrition Program.


    Book Orders

    Click Add to Cart buttons to begin an order for mail delivery (US and Canada). All books can be downloaded as PDF files. Click the Download buttons to order eBooks for download. Pay by Pay Pal for immediate download. Click the book titles (center column) to read topics from each book.

    Print Books Read Topics Download
    Alpha Nutrition Program
    Aching and Fatigue
    Air and Breathing
      Alpha Nutrition Cooking
    Alcohol Problems 
    Gluten Problems 
    Managing Diabetes 2
      Eating and Weight
    Skin Disease
    Feeding Children
      Human Brain
    Food Allergy
    Digestive Disorders
      Food Choices
      Heart & Arterial Disease
      Immunology Notes
    Inflammatory Arthritis
    Nutrition Notes

    Google Search Alpha Online

     
    Alpha Online

    alpha online

    Alpha Online is a Web Site developed by Environmed Research Inc. Sechelt, B.C., Canada. Online Since 1995. Orders for printed books, eBooks and nutrient formulas are placed at Alpha Online. Alpha Nutrition is a registered trademark of Environmed Research Inc.